Nonlinear ion modes in a dense plasma with strongly coupled ions and degenerate electron fluids
نویسندگان
چکیده
منابع مشابه
Structure of Strongly Coupled Electron-Ion Systems
The particles in dense plasmas exhibit a short range structure well-known from fluids. This structure is an important input quantity for the theoretical description of the thermodynamical, relaxation and transport properties of the system [1]. Static structural properties are described by the pair distribution g(r) or the structure factor S(k). Unlike many fluids, dense plasmas are inherently a...
متن کاملLinear and Nonlinear Dust Acoustic Waves in Quantum Dusty Electron-Positron-Ion Plasma
The behavior of linear and nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma including inertialess electrons and positrons, ions, and mobile positive/negative dust grains are studied. Reductive perturbation method is employed for small and finite amplitude DAWs. To investigate the solitary waves, the Korteweg–de Vries (KdV) equation is derived and the solution is presented. B...
متن کاملNonlinear excitations in Strongly-Coupled Plasma Lattices: Envelope solitons, kinks and Intrinsic Localized Modes
Ensembles of charged particles (plasmas) are a highly complex form of matter, most often modeled as a many-body system characterized by weak inter-particle interactions (electrostatic coupling). However, strongly-coupled plasma configurations have recently been produced in laboratory, either by creating ultra-cold plasmas confined in a trap or by manipulating dusty plasmas in discharge experime...
متن کاملOn strongly dense submodules
The submodules with the property of the title ( a submodule $N$ of an $R$-module $M$ is called strongly dense in $M$, denoted by $Nleq_{sd}M$, if for any index set $I$, $prod _{I}Nleq_{d}prod _{I}M$) are introduced and fully investigated. It is shown that for each submodule $N$ of $M$ there exists the smallest subset $D'subseteq M$ such that $N+D'$ is a strongly dense submodule of $M$ and $D'bi...
متن کاملCoupled electron-ion monte carlo calculations of dense metallic hydrogen.
We present an efficient new Monte Carlo method which couples path integrals for finite temperature protons with quantum Monte Carlo calculations for ground state electrons, and we apply it to metallic hydrogen for pressures beyond molecular dissociation. We report data for the equation of state for temperatures across the melting of the proton crystal. Our data exhibit more structure and higher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2011
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.84.026405